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Dynamics of phase separation of a simple fluid mixture: Comparison between molecular
dynamics and numerical integration of the phenomenological equation
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The dynamics of phase separation of fluid mixture is discussed. Numerical simulations in two dimensions
are done both by means of the molecular dynamics at constant temperature and by the numerical integration of
a phenomenological kinetic equation. Using a simplified interparticle potential, we find that final results in the
molecular dynamics are seriously affected by numerical errors. The growth exponent of phase-separating
domains varies from 1/3 to 2/3 due to the numerical errors for a low-viscosity fluid mixture with a critical
composition. The exponent 2/3 is observed in the case where the numerical error is ineffective. On the other
hand, the numerical error in the numerical integration of the phenomenological equation is not serious, and we
obtain the growth exponent 2/3, as has been observed by many other similar numerical analyses. We also
discuss possibilities of new growth exponents that are simultaneously associated with the inertia and the
dissipation[S1063-651X97)03601-5

PACS numbgs): 02.70—c, 64.70.Ja, 64.75.g, 05.70.Ln

[. INTRODUCTION mainly in two dimensions. It may be plausible that in two
dimensions the phenomenological equation itself is invalid,
Over more than two decades much attention has been paic., the validity of the two-dimensional hydrodynamic equa-
to the dynamics of phase separation from the viewpoints ofion may be questionable. Therefore, starting from the me-
basic nonequilibrium statistical physics and material sciencehanical equation, any behavior expected by the hydrody-
[1-7]. The phase separation is treated as an irreversible praxamic equation cannot be observed. The second concern is
cess that does not reach a thermal equilibrium state. Amongbout the system size. Are system sizes for previous molecu-
several kinds of systems the fluid is peculiar because of ittar dynamics large enough to attain the collective motion of
fluidity. The fluidity is often characterized by inertia. The the fluid and therefore to attain suitable fluid phase separa-
effect of the inertia on the phase separation of fluid has beetions? The third question is whether there is any fundamental
discussed in terms of theoretidd] and numerical simula- difficulty in achieving thermodynamic properties by numeri-
tions[9-20] as a direct observation of phase separation andal molecular dynamics. This is because molecular dynamics
also theoretically as the phase separation with sh2ar is seriously affected by the chaotic behavior of the many-
One of the purposes of investigating the fluid system is tgarticle systenj23]. In this paper we focus our attention on
know how the inertia of the fluid affects the phase-separatiothe second and third problems. Because our aim is not to
process, because the inertia has a purely mechanical originbtain rigorous quantitative results for the realistic molecular
is associated with the time-reversal symmetry of dynamicssystem but to know qualitative properties of the phase sepa-
and is inevitable in any large-scale motion. A similar prob-ration of the many-particle system, we employ a simpler in-
lem arises in hydrodynamic turbulence. It is predicted thaterparticle potential that saves computational time, and
the characteristic length scaRevaries ag?® as a function of makes the system size effectively large. Then we find that
time t in two- and three-dimensional low-viscosity fluif]  the molecular dynamics is affected by numerical errors in a
if the binary system is phase separating with interconnectederious way. We show also that a careful molecular dynam-
domain morphology, which appears for critical compositionsics gives the same growth exponent 2/3 as phenomenological
(in three dimensions near the critical temperature the growttreatment. At this moment we consider that the first problem
law is linear in timet, i.e., Rect, if the length scale is not is not serious to the phase separation.
large [22]). However, this growth law is still controversial In this paper we discuss how the molecular-dynamical
from the viewpoint of numerical simulations. Methods of treatment is qualitatively affected by the chaotic behavior of
numerical simulations can be classified into two categoriesparticle system and how we obtain a correct result from mo-
One is simulation by phenomenological modg¥s-11,17— lecular dynamics. We examine also the simulation based on
20], where thermodynamic properties of the system are alphenomenological equations, but we do not meet the same
ready taken into account, and the other is simulation by moproblem as for the particle system.
lecular dynamicg12-16, where thermodynamic properties  In the next section the essence of the growth exponent is
have to be attained simultaneously. Methods by phenomengiven with the aid of the dimensional analysis. A new expo-
logical models give the growth exponent 2/3, whereas monent is predicted; however, this exponent is not yet observed.
lecular dynamics often gives different results. Several probin Sec. lll we present several numerical results by molecular
lems or questions must be examined to clarify thisdynamics. In Sec. IV we discuss how the chaotic behavior of
discrepancy between phenomenological and moleculathe particle system influences the molecular dynamics. We
dynamical simulations. The first is that simulations are done&lso present some numerical results using a phenomenologi-
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cal equation in Sec. V. In Sec. VI we present concludingR~ (ov/p)*%°. For a detailed discussion of this growth

remarks. law, see Appendix A. This is the growth law in the case
where clusters or domains are redestroyed by the kinetic en-

Il. TEMPORAL EVOLUTION ergy released with cluster coarsening. This growth law

OF THE PHASE SEPARATION would hardly be observed. More generally, by multiplying

i , o _Egs.(2) and(3) by weight factorsx and 1-x, we have
Inside the coexistence curve the thermodynamic instabil-

ity causes a phase separation. In principle, the temporal evo- R= X3 ~X/3,,(1-X)12¢(x+3)/6, (5)
lution of the system from a homogeneous to a phase-

separated inhomogeneous state can be found by solving the, e setx=1 then the above relation does not contain the
equation of motion. But this is generally not tractable. In thekinetic viscosity» and the relation give®R=t?3, If we set
limit of the large characteristic length scale, the microscopicx:3 we obtainRet. If we choosex=23/5 we find Roct3/

Iength_scale can be reduced to ZE€ro. Once the MICTOSCODiF e are many other possible growth laws, but the origins
scale is reduced to zero, the explicit value of Macroscopigy « o growth laws are not clear

scale is often not important: The system becomes scale in- For isolated clusters in fluid the surface tension does not

variant: In this case one may extract a univers_al aspect Qf th&ffect the phase separation. In such a case the thermal fluc-
dynamical behawqr W|thout' solvmg the equa.\t.lon of mOtlon'tuation is a driving force. We have, for the thermal energy
There are some microscopic physical quantities that charag:

terize the dynamics of system, such as particle mass, partic &
number density, and surface tension. These quantities are KaT 1= 2r+7—2

' . . Tl=[m][1]t]~. 6
closely related to the macroscopic behavior of the system. [keT1=[m]L1 7] ®
The macroscopic 'e.”gth scd.Rt_:and time scalé are related From this and the third relation of Egl) we eliminate the
to these microscopic quantities. Lptn], [I], and[t] be

: . . ) mass[ m],

dimensions of mass, length, and time, respectively. The sur-
face tensionr, the kinetic viscosityv, and the mass density
p are the characteristic physical quantities in the case where [1]= (L
a relevant driving force is the surface tension. Dimensions of P
these quantities are, respectively,

[o]=[mIIP~ 7% [vl=[117t]7Y [p]=[m][|]_(ij

1/(d+2)
[t]Z/(d+2). (7)

Combining the above relation with E(B) we have

kg T\ ¥/(@+2)
R= (_ P(1=X)/2¢12[1~(d=2)x/(d+2)] @)
Eliminating[ m] from the first and the last relations, we ob- p
tain Also in this case it will become apparent that the following
o\1R o3 three values ok are relevant using the simplest combination
(1= (;) [t] 2 of kgT andv. Forx=1 the growth law does not depend on
the kinetic viscosityy and givesRot?(@+2) which is applied
The second relation of Eqél) is rewritten as to clusters floating in vapdi8]. Choosingx=(d+2)/d we
have RY=kgT# t, which is the cluster coagulation by
[1]1=([th*2 (3 Brownian motion[24]. The growth law in the case of cluster

L _ reseparation is given by choosing=(d+2)/(d+4) as
Combining the above two relations, we can make the f0||OW-R~(VkBT/p)ll(d+4)t3/(d+4)_ Notice that in two dimensions

ing type of relation: the growth law exponent is independentxcénd is given as

[1]/[t]P=A. ) Ret2, All kinds of processes driven by the thermal fluctua-
tion have the same growth law exponent 1/2 in two dimen-

Herea andA are constants independent of the length and th&!0nS. _ _ _
time scales and hence this can be determined independently The above dimensional analysis can be extended. Let
of the length scale. This means thatand A can be deter- R=fs(t,x) andR=f(t,x) be the growth laws by the surface
mined microscopically, but dimensiofi§] and[t] are appli- tension and thermal fluctuation. Then a combined growth
cable to the corresponding macroscopic quantities. This i8W R="f(t,x)Yf(t,x')*™ is also a possible growth law.
the essence of the growth process at phase separation. The

macroscopic length scaR varies adR«t?. The quantitya is IIl. NUMERICAL ANALYSIS

called the growth exponent. There may be number of sets of OF MOLECULAR DYNAMICS

a and A. Let us replacgl] and[t] by the macroscopic _ )

length scaleR and macroscopic time We find that simple We have performed a numerical analysis of the molecular

combinations of and » give important growth exponents. dynamics of a fluid mixture. The model we use in this paper
That is, o itself givesR~ (o/p) Y323 which is the surface IS desc_rlbed by a temporally dlscret|;ed Newton equation.
tension driven and inertia controlled growth I4g]. By  FOr @ single-particle system the equation is given by
solving Egs.(2) and(3) for o and v we find thato/v gives

R~ at/pv, which is the surface tension driven and dissipa- r+Ay+rt—Ay—2r(t) _Fit) ©

tion controlled growth law22]. In the same wayrv gives At? '
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A-B such a steep potential and therefore much computational
time is needed to obtain a reliable result. Otherwise, we must
use a smaller system and we get a less reliable result. Be-

1 /] 144 cause we are interested in the macroscopic behavior of the
phase separation, such a microscopic structure of the inter-
particle force is not essential. Later we shall discuss why the
molecular dynamics is not tractable to get reliable numerical
results. This situation does not depend on explicit forms of
the interparticle potential. Our interparticle potential is am-
plified between unlike particles. Then the domain interface
becomes sharp and the system size is effectively large. The
periodic boundary condition is used. We tried several values
of At from 3 to % The simulations are done up to time
20X 60. In each time interval 60 we obtain numerical data.

0 | ! We define the temperature by
1 1.44

(=)

Interparticle force

1 2 2
T: K<UX+UY>' (14)
A-AB-B B
We tried several values of temperatukgT=0.05-0.%.

FIG. 1. Interparticle forces: upper, force between unlike Par-The length scalék(t) is defined by means of the structure

ticles; lower, force between like particles. function S (t):
wherer(t) andF(t) are the position and force at timeThe
particle mass is set to unitt is a discrete time interval. Sk(t)=2 pipjexpk-(ri—r;), (15
The mass of particle is set to 1. Equatit® is the Veret =]
algorithm[25] to simulate Newton’s equation and it reduces M
to Newton’s equation of motion in the limiAt—0. The f KMS, (t)dk
above equation of motion is symmetric with respect to the 1R(t) = (16)
time reversal At— —At). This time-reversal symmetric '
equation can be transformed into a set of two different equa- f Sk(t)dk
tions
Herek is the wave number vector andand | indicate the
rit+An=r(t+v(t)At, (10 jth andjth particles.p=1 for A particles andp=—1 for
B particles. In practice, we calculaB(t) by coarse graining
v(t+At) =v(t) + F(t+At)At, (11 the space into cells and using a fast Fourier transform. For
) . the integration ovek we cut off wave numbers larger than
wherev is the velocity. 6k.,, wherek,, is the peak position of the structure function,

Numerical analyses for the many-particle system havgecayse the structure function at large wave numbers
been done in the following way. InitiallA andB particles  gyongly reflects the effect of individual particles. We tried
are randomly distributed on the square lattice sites with unite,eral values of.
lattice spacing. The initial velocities of the particles are set  Tha number of particles is 286The composition is 0.5

randomly. The interparticle force we use here is as fol!ows_i_e_’ the number oA particles andB particles are the same.
Let A andB denote two species. We assume that a particle i

. . 1 .
acted upon by surrounding particles by the fofEy. 1) ?n most cases we used a discrete tifxte= g5, except in the

case where we examine the effect&f on the growth ex-
r ponenta by the molecular dynamics. Most simulations are
=(r—=1) for r<1.44 12 done under constant temperature. We used the simplest

Faa(r)=Fgp(r)=1 T (12 method to set a constant temperature. Namely, instead of Eq.
0 for r>1.44, (11) we use
r To
5F(r—1) for r<1.2 v(t+At)= m[v(t)ﬁ—F(HAt)At], a7
Fag(r)= (13

whereT is the temperature defined by Ed4) andT, is a
constant. Using this equation the temperature of the system
0 for r>1.44. is kept atT,. It should be noted that this procedure intro-
duces a friction term into the difference equation. This fric-
HereF,, ; indicates forces betweenandg particles. Thisis tion term is not effective if the numerical integration is exact
a truncated harmonic potential, with an extra repulsion beand the length scalg is large enough, because the change in
tween unlike particles. We also tried the Lennard-Jones-typthe temperature is very small in such a case. However, as we
potential, but we found that the numerical error is larger forshall show later, the increase in the temperature is very large

r
—5F(r—1) for l.2<r<1.44
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FIG. 2. Scaling plot of the structure function by molecular dy- [ |
namics.R" 2" MkMS,(t) is plotted as a function okR for several -1 0 1 2 3
values ofM, which are shown in the figure. In (t+b)/(t,+b)

0

if At and therefore numerical error are large. In such a case

the rpetr_:%c_i of .ﬁot;]s?nt tempderatgre g:\\//es\,/\ylse _tOdUEeXpeCtE;_%mics, which are determined by the least-squares method, for
results. This will be discussec in Sec. IV. We tried the simu, gT=0.2. The parameteM and growth exponerd are shown on

lation also under the constant energy. In this case the initia{Le left- and on the right-hand sides, respectively=60 and
velocities of all particles are set to zero. The final temperag _R att=t, andb is a suitably determined value by the least-

ture is then about keT~0.42. Figure 2 shows squares method. The vertical axis does not represent a correct zero
R™2"MkMS(kR(t)), which is the general form of the scaling point.

plot. Here the case oht=0.01 is displayed. In Fig. 3 we

show length scales as functions of time for various values ofVe find that the growth exponeattakes values near 2/3 in

M. Here the growth exponet for each value oM is cal-  the temperature regionssT~0.15-0.5". Above 0.5 the

FIG. 3. Temporal evolution of length scales by molecular dy-

culated by the least-squares method growth exponent gradually decreases. This is because the

critical temperature is approached. Then the correlation

0,1 =6yl =0, (18 length becomes larger and the critical slowing down occurs.

Then it becomes difficult to get the growth exponent prop-

where erly within a small system and a short-time interval. The
2 exponent also decreases as the temperature decreases. This
| = E |nR(t0) +aln t+ _ (19) is the case where the system solidifies and domains becomes

T R(t) to+b frozen. We consider that the observed exporest?/3 is

equivalent to that observed by phenomenological models as
The summation ovet is taken ast=to,2t,3to, . ..,20o,  well as predicted theoretically. At this moment we cannot
which are times when data are taken. In Fig. 4 we show theletermine a correct critical temperature. Figure 4 may indi-
length scaleR as a function of time for several tempera- cate that the critical temperature locates around
tures. The straight line indicates the sldpén Fig. 5 we plot keT~0.5 (VkgT~0.7). We also evaluated the Reynolds
the growth exponent determined by the least-squares nymper. The Reynolds number is estimated as'Re'v and
method at several temperatures. Here a rectangle with e characteristic velocity is estimated @s SR/ 8t, where
black square represents a set of three valuesadfor st is the time interval of data output. The kinetic viscosity is
M=-1,0,1 at constant temperature. By=0 we mean a gstimated as~ v, wherev=KgT is the instantaneous
smallM (~0). We usedAt=g;5. A rectangle with a black velocity of particle andr, is the interparticle spacing
circle represents a set of three data by the simulation unddor particle collisions. We may setro<1. Let
constant energy. All data are averages of four different runghe one-dimensional system size bd.. Then
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FIG. 6. Temporal evolution of phase-separating patterns by mo-
lecular dynamics at temperatukgT=0.04 (VkgT=0.2). Two se-
quences labeled | and Il start with slightly different initial condi-
tions, namely, that the velocity of only one particle for sequence | is

different from that for sequence Il by an amount of only 10 The
number of particles is 64

IV. NUMERICAL ERRORS FOR INTEGRATION
OF THE EQUATION OF MOTION

When we integrate the equation of motion of the many-
particle system we encounter difficulty that is seldom met

FIG. 4. Temporal evolution of length scale by molecular dy- with the phenomenological equation. The trajectory of dy-

namics for various temperatures fovl=0. Here t;=60 and
Ro,=R att=t,. The numbers on figure indicatékgT.

Lk=2mwn (n=1,2,3,...). Let n,, be the average ohf,
which gives the maximum o§,. Then the length scale is

also given byR~L/n,,. The approximate value of the Rey-
nolds number estimated was more than 10 when the growt};

exponent is about 2/3.
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FIG. 5. Growth exponerd by molecular dynamics for various

temperatures. The discrete time is chosem\as 6—10 A rectangle
with a black square represents a set of exponentdvifer—1,0,1

namical motion in the many-particle system is intrinsically
unstable. The motion of any particle is chaotic. This can be
understood qualitatively as follows. Let us assume that the
direction of motion of a particle deviates by a small angle
A 6. Then at each collision with another particle this devia-
tion is amplified because the collision is done on a positively
urved surface. Then the deviation of a trajectory of a par-
icle is increased exponentially as a function of time or col-
lision number. This property is the source of the statistical
nature of a system consisting of a large number of particles
[26]. Therefore, the chaotic property of the system is neces-
sary for the system to be described by a phenomenological
equation such as the hydrodynamic equation. In the real sys-
tem the transformation from the microscopic motion to the
macroscopic motion is done perfectly. But by the numerical
integration of the equation of motion the transformation can-
not be done perfectly due to the chaotic property of the sys-
tem. This is a technical problem that is not seen in real sys-
tems. This is the reason why it is difficult for molecular
dynamics to obtain suitable results. Starting from the phe-
nomenological equation, such difficulty hardly arises. The
main motion we must deal with is the smoothing of domain
interfaces. The interfacial motion does not increase the inter-
facial area but decreases it. Such a smoothing motion de-
pends weakly on the initial condition and therefore is stable
at least locally(this may also be the basis of the idea of cell
dynamics[27]). This is the reason why the numerical analy-
sis by the phenomenological equation is safer than molecular
dynamics. We present here how numerical integrations of the
molecular-dynamical equation depend on initial conditions.
In Fig. 6 we show temporal evolutions of phase-separating
patterns by molecular dynamics. Only a single species of
particles is displayed. The temperaturéid =0.2* and the
number of particles is 64 The time interval between suc-
cessive patterns in each sequence is 60. Two sequences | and
Il start from different initial conditions. The difference in the
initial condition, however, is very small. That is, the initial

under constant temperature and a rectangle with a black circle igelocity of only one particle in sequence | is different only
under constant energy. The temperature under constant energyby 10 1° from that of sequence Il. A completely different

aboutkgT~0.42.

morphology emerges between the two sequences.
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Since particles move in a chaotic way, the numerical error

1/At ]

:_| Test of numerical error} W(t) can be treated as a random variable. In fact, the behav-
[ g ior of T for large At can be explained by the fact thét is

4 a random force. This is because, neglectiig Eq. (20) due

6 to T>T, and using a standard techniq(fer instance, see

8 [2]), we obtain

[k, T105}

d t
o &<v2>:2ﬁw<W(t)-W(t')> dt’'=2Q, (21

where we have set
12 ] (W(t)-W(t"))=2Q8(t—t"). (22)

We may assume thd) is independent of time because an

intrinsic chaotic motion of particles is the source of the ran-
15 domness ofW. Since the temperature is given by EG4)

] we find that the temperature increases linearly. For small

] At~ g5, T increases only slightly as a function of tireln

D 150 - this case the effect of the numerical error on the temperature
! is considered to be small. The increase in the temperature is
also due to domain growth by which the surface energy is
released. Most of the potential energy is released in the ini-
FIG. 7. Temperature as a function of timéor various values of tial stage of the phase separation and therefore the increase in

At in the case where velocities are not rescaled by the moleculd'€ temperature is not effective in later stages of the phase

dynamics. This represents the effect of the numerical error to thé€Paration. For the intermediate values\ofthe temperature

temperature. The numbers shown on the right-hand side are valu®§comes affected seriously by the numerical error as time

of 1/At. Heret,=60. Each set of data is taken from a single run. Proceeds. Notice that such an effect always occurs even for
o _ ) smaller value ofAt as time proceeds.

In principle, molecular dynamics should give the same Now let us consider the case of a simulation under con-
average behavior as the phenomenological method if the Nugant temperature. This case is equivalent to introducing an
merical integration is perfect. The chaotic property of thegftective friction term. The frictional coefficient is common
particle system is essentially needed to attain the thermodyy o1 particles. This violates the local momentum conserva-

namic property of the system. Therefore, one may considef, "therefore, if the effect of the numerical error cannot be

that the numerical errors would simply be transformed 'ntoneglected, the macroscopic equation is not like the Navier-

statistical properties and hence we may simply renormaliz%
;
t

e hermodynamic quaniessuch as pressre, emperaluicHSS SCLEIOL L e Lane cdaton e tonL o
and internal energy. But our numerical analysis will show :

that this is not true. For the fluid dynamics the effect of theequatlon fqr th.e macroscopic motion cqntams a friction t_erm
— veiV, Which is not like that of the Navier-Stokes equation

numerical error is serious. We explain this here. Our expla—b + 'of the Langevin tion. Heremeans the velocity of
nation is not rigorous, but only qualitative. tu ot the Lange ?quaT?] 'f .etlge ?a s he _eo<|: 2’3
First let us consider the case where we do not rescale thc£Je MACroscopic motion. The friction termyeqv IS relate

velocity. If the numerical integration is exact, this is the case® the random forc&V(t) by the usual fluctuation-dissipation

of the simulation under constant energy. But for lafgethe theorem

condition of constant energy is not satisfied. In Fig. 7 we

show the increase in the temperature of the system as a func- yeﬁ:iz_ (23
tion of time for various values akt. The simulation is done (v9)

under the same conditions as in Sec. lll. The initial tempera- o . )
ture is set to about zero. For large we find that the tem- The characteristic velocity=R/t should obey a dimen-

perature increases linearly with tinfext. At least for two ~ Sional equation

values ofAt=3% and 2, we can find thafT is proportional U ”

both tot andAt, i.e., TectAt. For largeAt we observe that —~— e+ —3, (24)
kgT>kgT.~0.5. Such a large increase in the temperature t pR

cannot be explained by the particle interaction. Therefore the . o .
increase in the temperature for largiés due to the numeri- where the second term on the right-hand side is the driving

cal error. Letw be the error due to the discretization of the force by the surface tension. This is transformed into
equation of motior(9). Then Eq.(9) is rewritten by a differ-

1/3
ential equation, by expanding as 1P -2 -1y1/3
R[] (72 et ™ (25
_dv(t) =F w 20
dt (H+W(). (20 Then the effective growth exponeat is given as
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FIG. 8. Temporal evolution of the length scale by molecular
dynamics for various discrete timest at temperaturdgT=0.2.
Numbers in the figure indicate sets of system size and the value
inverse discrete time IVt. Herety=60 andRy=R att=t,,.

FIG. 9. Growth exponera as a function of 1At by molecular
(gfynamics at temperaturkgT=0.22. One rectangle with black

quare indicates a set of three exponentdffer —1,0,1. The curve
indicates Eq(26), where we have sep.4t~ZtAt~5At.

2,1 p 1 _ g a'
aﬁzd InR_ (3 3'}’eﬁt). (26) FZJ (Evz-i- EX l(n—no)2+ E|V!ﬁ(l’)|2+ 7¢2
dInt (14 yet)
Sincey. is larger for largei\t, a4 crosses over from 2/3 to Ry g*|dr. (29

1/3 ast and/or At becomes larger. In Fig. 8 length scales

obtained by the molecular dynamics are shown as functionslere p is the mass density of the fluid and is given as
of time for some values of M. The temperature is p=nm, wherem is the mass of a molecule. Coefficients
kgT=0.2 and the number of particles is Z56The simula- a’, b’, andm are set—-a’=b’=m=1 and we also assume
tion is done up to time 2860. In Fig. 9 we show the cor- y~!>1 as an incompressible condition. Settaig= — 1, the
responding growth exponents determined by the leastiree energy takes minima at= 1. In this case the two-
squares method at temperatlgT = 0.2 for several values phase state is stable. The quantitieandn must satisfy the
of 1/At. Each rectangle with a black square represents a sebntinuity equations and therefore we assume

of three exponents foM = —1,0,1. The curve on the figure

indicates Eq.(26). Here we have assumed thais~ZAt, @: V] (30)
whereZ is a constant. Further we neglected trdependence dt n’
in Eqg. (26) and we have sety;~ZtAt~5At. In the last
equality of this equation we have replacgd simply by 5 d_lﬂ_ v (31)
because we are interested in the dependence odi . At dt y
this moment we cannot analytically determine the depen- )
dence of theyy on At. The prediction(26) is qualitatively ~ Where thej’s are currents
satisfied. It can be also found thAt= g5, which is used in SF
Sec. lll, is not small enough to obtain the suitable growth jn=nv—L,Vur, M:E%, (32
exponent 2/3.
o _oF
V. NUMERICAL ANALYSIS OF INTEGRATION =W LyVag, my= Sy’ (33)

OF PHENOMENOLOGICAL EQUATIONS
) o _and the second term in each current represents the diffusion.
Here we present results given by the numerical mtegra‘uorh: is the chemical potential in a dynamical sense and con-

of phenomenological kinetic equations. Phenomenologicgying the velocity fields. Usually in many phenomenological

kinetic equations of fluid mixture have been developed byneqries the second term pfis neglected. But this does not
many authorgsee, for instancg28]). Let na(r) andng(r) mean that the role of:} can be neglected. We assume that

be particle densities oA and B species and/(r) be the —_— — ;
velocity field. Then we introduce another set of variables the velocity fieldv obeys the Navier-Stokes equation
dv

— = . 2y
$=nNp—nNg, (27) pgr= PV VIVt ViV—VP, (34)

28) where 7 is the shear viscosity and is related to the kinetic

n=na+ng. HeTe )
ATTB viscosity v by the relation

We assume that the free energy is given by n=pv. (35
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P is the static pressure. We consider the case of constani

2 3 4 5
temperature. Then we can show that the Navier-Stokes equa y“ b -
tion (34) can be transformed intsee Appendix B E '
ot
F s 3\ o4 Je

dv
—=—p(V-V)V+ pV—nVu,—4Vu,, (36

Pat 1 2 3 4 5'
y ‘ b
"% g 3-&( 3‘! { t
=1 4
SE© X U,_ - A [N
- _ -1
= = n—ng), 3
Ken on x o) 37 FIG. 10. Temporal evolutions of phase-separating patterns by
the phenomenological equation. The kinetic viscosity0.01. The
- oF 2 3 system is divided into 6464 cells. Two sequences | and Il start
Hy= Ep: —gVY— gty (39 with different initial conditions, namely, that the order parameter of

one of the cells for sequence | is different by the amount

HereF© is the free energy for=0. In solidsv=0 due to ~ A¥=0.1 from that of sequence II.

the infinite friction. This corresponds to letting—>~. As a

result, the equation of motion fap is of a closed form and Furthermore, the shift in the initial condition in the
reduces to the Cahn-Hilliard equati®9]. In fluids, under ~molecular-dynamical case is quite small compared to the
the conditiony "'>1, Eq. (36) can be solved to give the Presentone. Therefore, we find that the two numerical meth-

well-known kinetic equation ofy using the Oseen tensor 0ds, the molecular dynamics and the integration of the phe-
[30] (see Appendix € nomenological equation, are quite different in tractability.
The numerical analysis of the incompressible fluid can be  Now we present numerical results of the temporal evolu-
done by solving Eqs(30)—(33) and (36)—(38). Notice that tion of the length scale in a larger system. Initially the ve-
Eq. (30) is a subsidiary equation for the incompressibility of locity field v is set to zero and the order parameter is ran-
fluid. This equation may be replaced by simpler one. Wedomly distributed betweer 0.75< ¢<0.75. The numerical

neglected the diffusion term in E¢B0): integration is done up to time 20128. In each time interval
128, we obtain numerical data. Figure 11 shows length scales
dn as functions of time for a small value of the kinetic viscosity
dat —V-nv. (39) v=0.01. The straight lines are determined by the least-

squares method18). Data are averaged over ten different
Furthermore, for the sake of computational efficiency, weruns. The Reynolds number evaluated in this case is more

used another form of the chemical potential functional than 1000. The growth exponeatis obtained for various
values ofM, which are shown in the figure.
,  tanhy In Sec. Il we have shown that there are two similar
py= KV G T (40 growth exponents 2/3 and 3/5 associated with the inertia. In

Appendix A we discuss fluctuations and energy dissipations
which is shallower than the original on88). HereK is a  in the process of the phase separation and we discuss these
constant. Equatiofd0) is based on the algorithm introduced two growth laws in detail. We find that the coarsening pro-
by Oono and Puri27]. We have neglected any random cess associated with the exponent 3/5 must accompany clus-
forces. The thermal fluctuation is included only in the initial ter reseparations. In our numerical simulations, however,
condition. cluster surfaces ramify, but clusters do not reseparate. In or-

The numerical method is a simple Euler method. The sysder for clusters to separate again, the energy must be con-
tem is divided into 258& 256 cells. The discrete time is cho- centrated in a narrow space. But such a concentration occurs
sen to be 0.1. Shorter ones are also tried, but the results avdth very small probability. We consider therefore, that the
not changed. The spatial derivative is replaced by differencesbserved growth exponents indicate not 3/5 but 2/3.
such asA(x+1y)—A(x,y) or [A(x+1y)—A(x—1y)]/2.
Then we chose parameters lag=L,=1/4, x =10, and
K=1/8. Choosing such g, we find thath= 1 within a width
of the order+10 4. The purpose of this paper was to examine the phase sepa-

In Fig. 10 we show temporal evolutions of phase-ration of a low-viscosity fluid mixture. We studied a two-
separating patterns by the above phenomenological equatiodimensional fluid mixture both by the molecular dynamics
The time interval between successive patterns in each s&ith a simplified interparticle potential and by the numerical
quence is 64. The system size is?64The viscosity is integration of the phenomenological equation. All studies are
v=0.01. Initially ¢ is randomly distributed between done for critical composition. We found that both types of
—0.25<¢=<0.25 and the velocity field is set to zero, i.e., simulations give the growth exponeRt:t?. Several phe-
v=0. The difference between the two sequences | and Il isilomenological models have exhibited the same exponent
that the initial value ofy in one of the cells is shifted by the a=2/3[9-11,17-20 We have shown that numerical errors
amount 0.1. The two sequences exhibit some differencei® molecular dynamics seriously affect the phase-separation
from each other, but these differences are small compared farocess. The growth exponesmtecreases from 2/3 to 1/3 as
the differences in the case of molecular dynamics in Sec. IVoumerical errors become larger. The source of such a reduc-

VI. SUMMARY
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growth. It is not obvious if such growth laws are really ob-

frr LI LM LI LM ™
8 F 0.616 - served.
F 0.624 ]
0.628 3 APPENDIX A: ENERGY DISSIPATION AND GROWTH
7E g-gig E LAWS ASSOCIATED WITH INERTIA
F 0.644 We examine here the energy dissipation in a fluid mixture
E M 0648 3 in detail and then give a detailed discussion for the growth
6F 20 0.652 exponents 2/3 and 3/5 associated with inertia, based on the
; -1.8 0656 3 hydrodynamic equation. The energy dissipation sometimes is
: 1.6 0660 ] responsible for the growth exponent in solid systdi®3&].
sp 14 0664 3 For simplicity we write the equation for the velocity field
> 12 0.664 ] in the form
c 1.0 ]
& 0.668 ] g
~ s -0.8 k V
c E 0.668 k 2
= 4}k B — =
E -0.6 0.668 E p dt + 7/k Vk Fk1 (Al)
0.4 0672 ]
F 0.2 0672 ] wherek is the wave numbery=vp is the shear viscosity,
SE 0.0 0672 1 and F is the force term. EquatiotAl) is based on the
0.2 0672 1 Navier-Stokes equation. A general consideration of the equa-
0.4 0.672 tion of m_otion for th_e ve_chity fieldv is given in Appendix
o b 8: 0672 3 B. Equation(Al) is simplified as
9 kv =F, for vk’ (=vk?/0)>1,  (A2)
1E b
E 14 ] de 5
1.6 ] p——=F for vkt<l. (A3)
1.8 dt
oF 2.0 4 _ o .
o 3 From this the energy dissipation is separated into two parts
......... [T FTSTETETE TR FETTETTRey R
-1 0 1 2 3 4
L 22
In (t+b)/(t+b) o= > 7nkIuvyl
vk2t>1
FIG. 11. Temporal evolution of length scales by the phenom- 1
enological equation, which are determined by the least-squares = 2 —2|Fk|2~|Fo|271_1(k|d_2—kg_2), (A4)
method. The paramet& and growth exponera are shown on the wk2t>1 S
left- and on the right-hand sides, respectiveps 128, Ry=R at
t=tq, and b is a suitably determined value by the least-squares . 2l 12 2202 )
method. The vertical axis does not represent a correct zero point. 6= 22 kv~ 22 np~ K| Fol?,
vket<1 vket<1 (AS)

tion of the growth exponent is numerical errors arising from _ N
the chaotic property of the many-particle system. A previougvhere we have sdt,=F,. Herek; is the critical wave num-
molecular dynamics analysis gave a smaller growth exponerier determined by
a<0.5 [15]. In that molecular dynamics study a steeper

. . : vkit=1 (A6)
Lennard-Jones-type interparticle potential was used. Gener- c .

ally the numerical error is larger for such a steeper potential, . . ) . .
Therefore, it is worth examining the effect of the numericalki 1S the upper limit of the integration and it is due to the

error for such a steep potential. We also emphasize that tHEe€Zing of the short wavelength due to the coarsening. For
system size is responsible for obtaining a suitable growttki>ke, €~|Fol?7p~2t%k{ " ?~|Fo|25~ ki 2 and the total
exponent. In our simulation we observed a plateaa b a  energy dissipation is given by

function of temperaturésee Fig. 5. This means that our
system size is large enough.

We have used the simplest way of setting a constant tem-
perature(17), which violates the local momentum conserva-and
tion law. There may be a better way of setting a constant
temperature. But remember that our primary purpose of the = e, ~|Fo|2np 2%k 2~ |Fo| 2~ kM 2/kE  for ki<k..
present paper was to examine the growth expoadoy the (A8)

molecular dynamics. This purpose has been achieved.
In this paper we predicted another set of growth expo-The upper limit of the integratiofk, is determined as fol-

nentsa= 3/5 and 6/(1+4), where the inertia and the energy lows. Let the average length scale Be Then the total en-
dissipation are simultaneously associated with the domaiergy density is given by~ ¢/R, where ¢ is the surface

e=epte~|Fol?n k"2 for k>k, (A7)
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tension. The energy dissipation is also givendiy~ /Rt pv?
and therefore we find fdt, >k, that|Fo|?%~ *k? 2~ o/Rt or Re=—
kd~?~ o/|Fo|?Rt. When the surface tension is effective,

the forceF in the real space is of the ordefR~oR 2.  for Re=1 (the crossover point

Therefore, in the Fourier space we hag|?~ o?R%™4,
Therefore, fork,>k, we have

(A14)
g

APPENDIX B: PHENOMENOLOGICAL DESCRIPTION
OF FLUID MIXTURE

K R)42 7R We derive here a suitable equation of motion for velocity
(kiR) Tt (A9) " field from the original Navier-Stokes equati@B4). Since
na=(n+)/2 andng=(n—¢)/2, we find that
In the same way, fok,<k. we have SE©
. Mn(r)= on
kR)9"2~ —(Rk,)*R. Al
(kiR) ot (Rk) (A10) Sna(r’) SF©@  sng(r’) SF©

| - :f an(r) ana(r) T en(r) ang(r)°
Let us consider the case where the inertia effects the do-

main growth. Then we examine the effect of the energy dis- ma(r)+ pg(r)
sipation on the phase separation. First we consider the case -
where the domain growth is done independently of the en-

ergy dissipation. In this case the length scRlevaries as and

(B1)

discussed in Sec. I, SE(®
TS =5y
R~|—| t%8 All
p) (ALD) sna(r’) SF©@  sng(r’) oF©

!

=j ; —~|dr

Now we consider the behavior &f. First let us consider the AR L

case of two dimensions. In the cadgq>k., using ua(r)—pug(r)

(kR)?~2~ yR/at, we obtainkR~expyRiot—1 (Rit—0). R E— (B2)
Thusk,~ 1/Rxt =23 Sincek >t~ %2, the conditionk, >k, is

violated in the long-time limit. On the other hand, for where F(®) is the static part of the free energy,

k <k, we havek ot~ "2~t~58 Then the condition FO=F(v=0), andus= 6F?/én, and ug= 6F )/ éng are
the static chemical potentials of speci@sand B, respec-
1R<k <k, (A12) tively. Then wusing Gibbs-Duhm relationsdT—dP

+3i_agnidu;=0, wheres=S/V is the entropy density,
is always fulfilled. The same also holds for three dimensionsand ~ also  using  the  relation nadua+ngdug
For k;>k. we havek =1/t and the conditiork,>k. is not ~ =ndun+¢du,, we havesdT—dP+ndu,+¢du,=0 or

satisfied in the long-time limit. On the other hand, for SYT—VP+nVu,+¢Vu,=0. Under the constant tempera-
ki<k. we havek,xt=%°=t~96 and the above condition is ture the first term vanishes. Then using this we rewfita

fulfilled. Eqg. (34) to obtain
Next we consider the case where the energy dissipation dv
interferes with the domain growth. The wave numkgris p—==—p(v-V)V+ pVv—nVu,— YyVu,, (B3)
not observable. Howevek; is the cutoff of the velocity dt
field, is observable, and gives another length scale. That igynere
the released surface energy at the sédlis dissipated at a
smaller scale Xj: The kinetic energy remains in the fluid oFO 4
for this period. Due to such a remaining kinetic energy, it is M= ==X ~(N—Np),
possible that clusters may separate into pieces again. If such
a reseparation occurs, then the limit of the wave nunkper SFO  5F ) 3
should be the characteristic length scRleThen we observe Hy= VR —OVI— gty (B4)
that R~ 1/k; and e~ ok;, and by settindg,R=1 in relation
(A20) for k;<k., we obtain We must show that the free ener®9) does not increase.
This is a necessary condition for phenomenological equa-
ov\ 1 tions. Let us consider the time derivative of the free energy
R~ —) t3/5, (A13)
dF_j <{/5F +h5F+ . 5F)dr
which is given in Sec. II. dt oV on "oy
Generally, by settindRt?, the Reynolds numberR?/t ) Y _
increases ifa>1/2. The inertial term becomes effective for =j Vepp N Mot |+ lﬂﬂw}df. (BS)

Reynolds number larger than 1. Three growth laRs
«t,t?® andt®® give the same value of the length scale ~ where
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2
kd-1dk

dv,
(p gr TVmnt t/fvuw)

_OF_ . [ e
M= 5, =PV (B6) 7

By substituting equations fo¢, n, andv, i.e., Eqs.(30)— :j 7|vie| k9T td k. (B11)
(33) and(B3), into Eq.(B5) we have

[}

+

2 Herev and each term in the large parentheses on the left-
_pvv_+ PVA—nVu,— ¢VM¢) hand side are nonconserved quantities. Nameljs a non-
2 linear function of a conserved quantity and is a nonconserved
quantity. The product of the conserved quantity is generally
[—V-(nv)+L,VZu*] nonconserved. Then the time derivativevpfwvhich contains
#Vu,, is nonconserved. We may assume that the spatial
correlation between two nonconserved quantity vanishes if
(B7)  two points are separated by a sufficiently long distance. Then
from the central limit theorem, mean squares of these quan-
tities take constant values at small wave numbers. For in-
where in the first term we used[(pv-V)v]=(pv-V)v?2.  stance, lim_ o|vi|?)=consk=. Therefore contributions
By rearranging terms with the aid of the partial integrationfrom small values ok are k% 3dk on the left-hand side of
we have Eq. (B11) and fk**dk on the right-hand side. Therefore, in
the limit k— 0, we demand that
dF
dt f

2
T2

+uy[—V-yv+ L¢,V2,u¢,] dr

1)2 U2
—pV~V?— 7V~pv)dr dv
—tnVu,+¢yVu,—0 for d<2 (B12)

Pdt
—f (= V- VAV+L | V2 + L Vg |H)dr.
and
(B8)
dv
>2.
The first term is reduced to the surface integration ‘pdt+nvﬂn+¢vﬂ" <o ford>2 (B13
— [Vpv(v?/2)dr and vanishes. Finally, we find that the free
energy does not increase: Therefore, in two dimensions the inertial teprdv/dt cannot

be neglected if the force termVu,+ Vu, does not vanish
dF v? 2 at small wave numbers.

APPENDIX C: INCOMPRESSIBLE FLUID (LINEAR CASE)
<0. (B9)

In fluid the assumption of incompressibility is often used.
We comment here on EdB3). By rewriting Eq. (B9) This assumption can be used to eliminate the velocity field

with the use of kinetic equatior80)—(33) and(B3) we have Y @nd to make a closed equation for In order to make the
fluid incompressible we assume that the change in the den-

dF dv q sity due to the diffusion is very small,—0. Sincen is
% o 2
- _ 1 NVt 4V ) 2( I v constant, n=—nV.v+L,V°u, from Egs.(30) and(32).
dt g J (p dt st Ny |V P G Hn In the limit L,—0, we haveV-v=0. But we cannot simply
setV-v=0. This is because we must treat the transmission
) of the force in fluid. Thus we assume tHatv is very small

dn
+¢V,u¢,)dr—L;1j (d—+V nv
t compared tdv2u, . InsertingV into the linearized equation

o dn g | L—lf dy . (36), we have
aJr -nv |dr v at +V.-yv .
(dy pdtV v=79V2V.-v—nV2u,—V-(yVu,). (C1
XV A+ Y v | d (B10)

Here the second term on the right-hand side is equivalent to

Here we have neglected the temperature term and nonlineaf, 'n?V-v and is much larger than the left-hand side and the
term of velocity field. In Eq(B10) the second and the third first term on the right-hand side. The left-hand side and the
term are the product of quantities that satisfy the conservdirst term on the right-hand side are smaller than any other
tion law. By this reason the long-range integration of thesderms. Therefore—nVZu,—V-(4Vu »=0. To solve this
terms gives a finite contribution. But the first term is not of equation forV,un we multiply the equation bWV 2, i.e.,

such a form. The first term on the right-hand side is written,—nVu,=VV ~2V. (#Vuy). By substituting this into the lin-
using the Fourier coefficient, as earized equatio36) we obtain
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v_ Va—(1-V2V:V)yV
PG v—(I— VVu,

=nV?v— nf VET(r=r")(r" )V w,(r')dr’.
(C2
HereT is the Oseen tensor

T(r—r")=7"V 2(1-V2V:V)8(r—r")

=(877377)*1J' k~2(1—k:k)ek "~ "'dk. (C3)

1161

solved to give a well-known kinetic equation fgr[30]. The
inertial term can be neglected when the viscosity is large. By
setting the left-hand side of EQC2) equal to zero we have
v=[T(r—r")(r')V' u,(r")dr’. By substituting this into
Eq. (31), we have

It :L¢V2M¢+V¢f T(r—=r")ip(r" )V py(r’) dr’

=L¢V2M¢—V¢f ST(r=r") [V (") (r') dr'.

(C4

wherek andk=k/k are the wave-number vector and the unitHere we have usedVu=V(uy)—(Vy)u and TV=0 to
wave-number vector, respectively. For viscous fluid this istransform the first equality into the last one.
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