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Dynamics of phase separation of a simple fluid mixture: Comparison between molecular
dynamics and numerical integration of the phenomenological equation

H. Furukawa
Faculty of Education, Yamaguchi University, Yamaguchi 753, Japan

~Received 26 July 1996; revised manuscript received 20 September 1996!

The dynamics of phase separation of fluid mixture is discussed. Numerical simulations in two dimensions
are done both by means of the molecular dynamics at constant temperature and by the numerical integration of
a phenomenological kinetic equation. Using a simplified interparticle potential, we find that final results in the
molecular dynamics are seriously affected by numerical errors. The growth exponent of phase-separating
domains varies from 1/3 to 2/3 due to the numerical errors for a low-viscosity fluid mixture with a critical
composition. The exponent 2/3 is observed in the case where the numerical error is ineffective. On the other
hand, the numerical error in the numerical integration of the phenomenological equation is not serious, and we
obtain the growth exponent 2/3, as has been observed by many other similar numerical analyses. We also
discuss possibilities of new growth exponents that are simultaneously associated with the inertia and the
dissipation.@S1063-651X~97!03601-5#

PACS number~s!: 02.70.2c, 64.70.Ja, 64.75.1g, 05.70.Ln
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I. INTRODUCTION

Over more than two decades much attention has been
to the dynamics of phase separation from the viewpoints
basic nonequilibrium statistical physics and material scie
@1–7#. The phase separation is treated as an irreversible
cess that does not reach a thermal equilibrium state. Am
several kinds of systems the fluid is peculiar because o
fluidity. The fluidity is often characterized by inertia. Th
effect of the inertia on the phase separation of fluid has b
discussed in terms of theoretical@8# and numerical simula-
tions @9–20# as a direct observation of phase separation
also theoretically as the phase separation with shear@21#.
One of the purposes of investigating the fluid system is
know how the inertia of the fluid affects the phase-separa
process, because the inertia has a purely mechanical or
is associated with the time-reversal symmetry of dynam
and is inevitable in any large-scale motion. A similar pro
lem arises in hydrodynamic turbulence. It is predicted t
the characteristic length scaleR varies ast2/3 as a function of
time t in two- and three-dimensional low-viscosity fluids@8#
if the binary system is phase separating with interconnec
domain morphology, which appears for critical compositio
~in three dimensions near the critical temperature the gro
law is linear in timet, i.e., R}t, if the length scale is no
large @22#!. However, this growth law is still controversia
from the viewpoint of numerical simulations. Methods
numerical simulations can be classified into two categor
One is simulation by phenomenological models@9–11,17–
20#, where thermodynamic properties of the system are
ready taken into account, and the other is simulation by m
lecular dynamics@12–16#, where thermodynamic propertie
have to be attained simultaneously. Methods by phenome
logical models give the growth exponent 2/3, whereas m
lecular dynamics often gives different results. Several pr
lems or questions must be examined to clarify t
discrepancy between phenomenological and molecu
dynamical simulations. The first is that simulations are do
551063-651X/97/55~1!/1150~12!/$10.00
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mainly in two dimensions. It may be plausible that in tw
dimensions the phenomenological equation itself is inva
i.e., the validity of the two-dimensional hydrodynamic equ
tion may be questionable. Therefore, starting from the m
chanical equation, any behavior expected by the hydro
namic equation cannot be observed. The second conce
about the system size. Are system sizes for previous mole
lar dynamics large enough to attain the collective motion
the fluid and therefore to attain suitable fluid phase sep
tions? The third question is whether there is any fundame
difficulty in achieving thermodynamic properties by nume
cal molecular dynamics. This is because molecular dynam
is seriously affected by the chaotic behavior of the ma
particle system@23#. In this paper we focus our attention o
the second and third problems. Because our aim is no
obtain rigorous quantitative results for the realistic molecu
system but to know qualitative properties of the phase se
ration of the many-particle system, we employ a simpler
terparticle potential that saves computational time, a
makes the system size effectively large. Then we find t
the molecular dynamics is affected by numerical errors i
serious way. We show also that a careful molecular dyna
ics gives the same growth exponent 2/3 as phenomenolog
treatment. At this moment we consider that the first probl
is not serious to the phase separation.

In this paper we discuss how the molecular-dynami
treatment is qualitatively affected by the chaotic behavior
particle system and how we obtain a correct result from m
lecular dynamics. We examine also the simulation based
phenomenological equations, but we do not meet the s
problem as for the particle system.

In the next section the essence of the growth exponen
given with the aid of the dimensional analysis. A new exp
nent is predicted; however, this exponent is not yet observ
In Sec. III we present several numerical results by molecu
dynamics. In Sec. IV we discuss how the chaotic behavio
the particle system influences the molecular dynamics.
also present some numerical results using a phenomeno
1150 © 1997 The American Physical Society
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55 1151DYNAMICS OF PHASE SEPARATION OF A SIMPLE . . .
cal equation in Sec. V. In Sec. VI we present conclud
remarks.

II. TEMPORAL EVOLUTION
OF THE PHASE SEPARATION

Inside the coexistence curve the thermodynamic insta
ity causes a phase separation. In principle, the temporal
lution of the system from a homogeneous to a pha
separated inhomogeneous state can be found by solving
equation of motion. But this is generally not tractable. In t
limit of the large characteristic length scale, the microsco
length scale can be reduced to zero. Once the microsc
scale is reduced to zero, the explicit value of macrosco
scale is often not important: The system becomes scale
variant. In this case one may extract a universal aspect o
dynamical behavior without solving the equation of motio
There are some microscopic physical quantities that cha
terize the dynamics of system, such as particle mass, par
number density, and surface tension. These quantities
closely related to the macroscopic behavior of the syst
The macroscopic length scaleR and time scalet are related
to these microscopic quantities. Let@m#, @ l #, and @ t# be
dimensions of mass, length, and time, respectively. The
face tensions, the kinetic viscosityn, and the mass densit
r are the characteristic physical quantities in the case wh
a relevant driving force is the surface tension. Dimensions
these quantities are, respectively,

@s#5@m#@ l #32d@ t#22, @n#5@ l #2@ t#21, @r#5@m#@ l #2d.
~1!

Eliminating @m# from the first and the last relations, we o
tain

@ l #5S s

r D 1/3@ t#2/3. ~2!

The second relation of Eqs.~1! is rewritten as

@ l #5~n@ t# !1/2. ~3!

Combining the above two relations, we can make the follo
ing type of relation:

@ l #/@ t#a5A. ~4!

Herea andA are constants independent of the length and
time scales and hence this can be determined independ
of the length scale. This means thata andA can be deter-
mined microscopically, but dimensions@ l # and@ t# are appli-
cable to the corresponding macroscopic quantities. Thi
the essence of the growth process at phase separation
macroscopic length scaleR varies asR}ta. The quantitya is
called the growth exponent. There may be number of set
a and A. Let us replace@ l # and @ t# by the macroscopic
length scaleR and macroscopic timet. We find that simple
combinations ofs andn give important growth exponents
That is,s itself givesR;(s/r)1/3t2/3, which is the surface
tension driven and inertia controlled growth law@8#. By
solving Eqs.~2! and ~3! for s andn we find thats/n gives
R;st/rn, which is the surface tension driven and dissip
tion controlled growth law@22#. In the same waysn gives
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R;(sn/r)1/5t3/5. For a detailed discussion of this growt
law, see Appendix A. This is the growth law in the ca
where clusters or domains are redestroyed by the kinetic
ergy released with cluster coarsening. This growth l
would hardly be observed. More generally, by multiplyin
Eqs.~2! and ~3! by weight factorsx and 12x, we have

R5sx/3r2x/3n~12x!/2t ~x13!/6. ~5!

If we setx51 then the above relation does not contain t
kinetic viscosityn and the relation givesR}t2/3. If we set
x53 we obtainR}t. If we choosex53/5 we findR}t3/5.
There are many other possible growth laws, but the orig
of such growth laws are not clear.

For isolated clusters in fluid the surface tension does
effect the phase separation. In such a case the thermal
tuation is a driving force. We have, for the thermal ener
kBT,

@kBT#5@m#@ l #2@ t#22. ~6!

From this and the third relation of Eqs.~1! we eliminate the
mass@m#,

@ l #5S kBTr D 1/~d12!

@ t#2/~d12!. ~7!

Combining the above relation with Eq.~3! we have

R5S kBTr D x/~d12!

n~12x!/2t1/2[12~d22!x/~d12!] . ~8!

Also in this case it will become apparent that the followin
three values ofx are relevant using the simplest combinati
of kBT andn. For x51 the growth law does not depend o
the kinetic viscosityn and givesR}t2/(d12), which is applied
to clusters floating in vapor@8#. Choosingx5(d12)/d we
have Rd5kBTh21t, which is the cluster coagulation b
Brownian motion@24#. The growth law in the case of cluste
reseparation is given by choosingx5(d12)/(d14) as
R;(nkBT/r)

1/(d14)t3/(d14). Notice that in two dimensions
the growth law exponent is independent ofx and is given as
R}t1/2. All kinds of processes driven by the thermal fluctu
tion have the same growth law exponent 1/2 in two dime
sions.

The above dimensional analysis can be extended.
R5 f s(t,x) andR5 f t(t,x) be the growth laws by the surfac
tension and thermal fluctuation. Then a combined grow
law R5 f s(t,x)

yf t(t,x8)
12y is also a possible growth law.

III. NUMERICAL ANALYSIS
OF MOLECULAR DYNAMICS

We have performed a numerical analysis of the molecu
dynamics of a fluid mixture. The model we use in this pap
is described by a temporally discretized Newton equati
For a single-particle system the equation is given by

r ~ t1Dt !1r ~ t2Dt !22r ~ t !

Dt2
5F~ t !, ~9!
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1152 55H. FURUKAWA
wherer (t) andF(t) are the position and force at timet. The
particle mass is set to unity.Dt is a discrete time interval
The mass of particle is set to 1. Equation~9! is the Veret
algorithm@25# to simulate Newton’s equation and it reduc
to Newton’s equation of motion in the limitDt→0. The
above equation of motion is symmetric with respect to
time reversal (Dt→2Dt). This time-reversal symmetric
equation can be transformed into a set of two different eq
tions

r ~ t1Dt !5r ~ t !1v~ t !Dt, ~10!

v~ t1Dt !5v~ t !1F~ t1Dt !Dt, ~11!

wherev is the velocity.
Numerical analyses for the many-particle system h

been done in the following way. InitiallyA andB particles
are randomly distributed on the square lattice sites with u
lattice spacing. The initial velocities of the particles are
randomly. The interparticle force we use here is as follo
Let A andB denote two species. We assume that a particl
acted upon by surrounding particles by the force~Fig. 1!

FA,A~r !5FB,B~r !5H rr ~r21! for r,1.44

0 for r.1.44,

~12!

FA,B~r !55
5
r

r
~r21! for r,1.2

25
r

r
~r21! for 1.2<r<1.44

0 for r.1.44.

~13!

HereFa,b indicates forces betweena andb particles. This is
a truncated harmonic potential, with an extra repulsion
tween unlike particles. We also tried the Lennard-Jones-t
potential, but we found that the numerical error is larger

FIG. 1. Interparticle forces: upper, force between unlike p
ticles; lower, force between like particles.
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such a steep potential and therefore much computatio
time is needed to obtain a reliable result. Otherwise, we m
use a smaller system and we get a less reliable result.
cause we are interested in the macroscopic behavior of
phase separation, such a microscopic structure of the in
particle force is not essential. Later we shall discuss why
molecular dynamics is not tractable to get reliable numer
results. This situation does not depend on explicit forms
the interparticle potential. Our interparticle potential is a
plified between unlike particles. Then the domain interfa
becomes sharp and the system size is effectively large.
periodic boundary condition is used. We tried several val
of Dt from 1

2 to
1
150. The simulations are done up to tim

20360. In each time interval 60 we obtain numerical da
We define the temperature by

T5
1

2kB
^vx

21vy
2&. ~14!

We tried several values of temperaturekBT50.052–0.92.
The length scaleR(t) is defined by means of the structu
functionSk(t):

Sk~ t !5(
i. j

pipjexpik•~r i2r j !, ~15!

1/R~ t !5S E kMSk~ t !dk

E Sk~ t !dk
D 1/M

. ~16!

Herek is the wave number vector andi and j indicate the
i th and j th particles.p51 for A particles andp521 for
B particles. In practice, we calculateSk(t) by coarse graining
the space into cells and using a fast Fourier transform.
the integration overk we cut off wave numbers larger tha
6km , wherekm is the peak position of the structure functio
because the structure function at large wave numb
strongly reflects the effect of individual particles. We trie
several values ofM .

The number of particles is 2562. The composition is 0.5,
i.e., the number ofA particles andB particles are the same

In most cases we used a discrete timeDt5 1
60 , except in the

case where we examine the effect ofDt on the growth ex-
ponenta by the molecular dynamics. Most simulations a
done under constant temperature. We used the simp
method to set a constant temperature. Namely, instead of
~11! we use

v~ t1Dt !5A T0
T~ t !

@v~ t !1F~ t1Dt !Dt#, ~17!

whereT is the temperature defined by Eq.~14! andT0 is a
constant. Using this equation the temperature of the sys
is kept atT0. It should be noted that this procedure intr
duces a friction term into the difference equation. This fr
tion term is not effective if the numerical integration is exa
and the length scaleR is large enough, because the change
the temperature is very small in such a case. However, as
shall show later, the increase in the temperature is very la

-
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55 1153DYNAMICS OF PHASE SEPARATION OF A SIMPLE . . .
if Dt and therefore numerical error are large. In such a c
the method of constant temperature gives rise to unexpe
results. This will be discussed in Sec. IV. We tried the sim
lation also under the constant energy. In this case the in
velocities of all particles are set to zero. The final tempe
ture is then about kBT'0.422. Figure 2 shows
R222MkMS„kR(t)…, which is the general form of the scalin
plot. Here the case ofDt50.01 is displayed. In Fig. 3 we
show length scales as functions of time for various value
M . Here the growth exponenta for each value ofM is cal-
culated by the least-squares method

daI5dbI50, ~18!

where

I5(
t

S lnR~ t0!

R~ t !
1a ln

t1b

t01bD
2

. ~19!

The summation overt is taken ast5t0,2t0,3t0 , . . . ,20t0,
which are times when data are taken. In Fig. 4 we show
length scaleR as a function of timet for several tempera
tures. The straight line indicates the slope2

3. In Fig. 5 we plot
the growth exponenta determined by the least-squar
method at several temperatures. Here a rectangle wi
black square represents a set of three values ofa for
M521,0,1 at constant temperature. ByM50 we mean a

smallM ('0). We usedDt5 1
60 . A rectangle with a black

circle represents a set of three data by the simulation un
constant energy. All data are averages of four different ru

FIG. 2. Scaling plot of the structure function by molecular d
namics.R222MkMSk(t) is plotted as a function ofkR for several
values ofM , which are shown in the figure.
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We find that the growth exponenta takes values near 2/3 in
the temperature regionskBT'0.152–0.52. Above 0.52 the
growth exponenta gradually decreases. This is because
critical temperature is approached. Then the correlat
length becomes larger and the critical slowing down occu
Then it becomes difficult to get the growth exponent pro
erly within a small system and a short-time interval. T
exponenta also decreases as the temperature decreases.
is the case where the system solidifies and domains beco
frozen. We consider that the observed exponenta'2/3 is
equivalent to that observed by phenomenological model
well as predicted theoretically. At this moment we cann
determine a correct critical temperature. Figure 4 may in
cate that the critical temperature locates arou
kBT'0.5 (AkBT'0.7). We also evaluated the Reynold
number. The Reynolds number is estimated as Re;Ru/n and
the characteristic velocity is estimated asu;dR/dt, where
dt is the time interval of data output. The kinetic viscosity
estimated asn;t0v, wherev5AkBT is the instantaneous
velocity of particle and r 0 is the interparticle spacing
for particle collisions. We may set r 0<1. Let
the one-dimensional system size beL. Then

FIG. 3. Temporal evolution of length scales by molecular d
namics, which are determined by the least-squares method
kBT50.22. The parameterM and growth exponenta are shown on
the left- and on the right-hand sides, respectively.t0560 and
R05R at t5t0 andb is a suitably determined value by the leas
squares method. The vertical axis does not represent a correct
point.
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1154 55H. FURUKAWA
Lk52pn (n51,2,3,. . . ). Let nm be the average ofn,
which gives the maximum ofSk . Then the length scale i
also given byR;L/nm . The approximate value of the Rey
nolds number estimated was more than 10 when the gro
exponent is about 2/3.

FIG. 4. Temporal evolution of length scale by molecular d
namics for various temperatures forM'0. Here t0560 and
R05R at t5t0. The numbers on figure indicateAkBT.

FIG. 5. Growth exponenta by molecular dynamics for variou

temperatures. The discrete time is chosen asDt5 1
60. A rectangle

with a black square represents a set of exponents forM521,0,1
under constant temperature and a rectangle with a black circ
under constant energy. The temperature under constant ener
aboutAkBT'0.42.
th

IV. NUMERICAL ERRORS FOR INTEGRATION
OF THE EQUATION OF MOTION

When we integrate the equation of motion of the man
particle system we encounter difficulty that is seldom m
with the phenomenological equation. The trajectory of d
namical motion in the many-particle system is intrinsica
unstable. The motion of any particle is chaotic. This can
understood qualitatively as follows. Let us assume that
direction of motion of a particle deviates by a small ang
Du. Then at each collision with another particle this dev
tion is amplified because the collision is done on a positiv
curved surface. Then the deviation of a trajectory of a p
ticle is increased exponentially as a function of time or c
lision number. This property is the source of the statisti
nature of a system consisting of a large number of partic
@26#. Therefore, the chaotic property of the system is nec
sary for the system to be described by a phenomenolog
equation such as the hydrodynamic equation. In the real
tem the transformation from the microscopic motion to t
macroscopic motion is done perfectly. But by the numeri
integration of the equation of motion the transformation ca
not be done perfectly due to the chaotic property of the s
tem. This is a technical problem that is not seen in real s
tems. This is the reason why it is difficult for molecula
dynamics to obtain suitable results. Starting from the p
nomenological equation, such difficulty hardly arises. T
main motion we must deal with is the smoothing of doma
interfaces. The interfacial motion does not increase the in
facial area but decreases it. Such a smoothing motion
pends weakly on the initial condition and therefore is sta
at least locally~this may also be the basis of the idea of c
dynamics@27#!. This is the reason why the numerical anal
sis by the phenomenological equation is safer than molec
dynamics. We present here how numerical integrations of
molecular-dynamical equation depend on initial conditio
In Fig. 6 we show temporal evolutions of phase-separat
patterns by molecular dynamics. Only a single species
particles is displayed. The temperature iskBT50.22 and the
number of particles is 642. The time interval between suc
cessive patterns in each sequence is 60. Two sequences
II start from different initial conditions. The difference in th
initial condition, however, is very small. That is, the initia
velocity of only one particle in sequence I is different on
by 10210 from that of sequence II. A completely differen
morphology emerges between the two sequences.

is
is

FIG. 6. Temporal evolution of phase-separating patterns by
lecular dynamics at temperaturekBT50.04 (AkBT50.2). Two se-
quences labeled I and II start with slightly different initial cond
tions, namely, that the velocity of only one particle for sequence
different from that for sequence II by an amount of only 10210. The
number of particles is 642.
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55 1155DYNAMICS OF PHASE SEPARATION OF A SIMPLE . . .
In principle, molecular dynamics should give the sam
average behavior as the phenomenological method if the
merical integration is perfect. The chaotic property of t
particle system is essentially needed to attain the thermo
namic property of the system. Therefore, one may cons
that the numerical errors would simply be transformed i
statistical properties and hence we may simply renorma
the thermodynamic quantities such as pressure, tempera
and internal energy. But our numerical analysis will sho
that this is not true. For the fluid dynamics the effect of t
numerical error is serious. We explain this here. Our exp
nation is not rigorous, but only qualitative.

First let us consider the case where we do not rescale
velocity. If the numerical integration is exact, this is the ca
of the simulation under constant energy. But for largeDt the
condition of constant energy is not satisfied. In Fig. 7
show the increase in the temperature of the system as a f
tion of time for various values ofDt. The simulation is done
under the same conditions as in Sec. III. The initial tempe
ture is set to about zero. For largeDt we find that the tem-
perature increases linearly with timeT}t. At least for two

values ofDt5 1
2 and 1

3 , we can find thatT is proportional
both to t andDt, i.e.,T}tDt. For largeDt we observe that
kBT@kBTc'0.5. Such a large increase in the temperat
cannot be explained by the particle interaction. Therefore
increase in the temperature for largeT is due to the numeri-
cal error. LetW be the error due to the discretization of th
equation of motion~9!. Then Eq.~9! is rewritten by a differ-
ential equation, by expandingr , as

dv~ t !

dt
5F~ t !1W~ t !. ~20!

FIG. 7. Temperature as a function of timet for various values of
Dt in the case where velocities are not rescaled by the molec
dynamics. This represents the effect of the numerical error to
temperature. The numbers shown on the right-hand side are va
of 1/Dt. Heret0560. Each set of data is taken from a single ru
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Since particles move in a chaotic way, the numerical er
W(t) can be treated as a random variable. In fact, the beh
ior of T for largeDt can be explained by the fact thatW is
a random force. This is because, neglectingF in Eq. ~20! due
to T@Tc and using a standard technique~for instance, see
@2#!, we obtain

d

dt
^v2&52E

2`

t

^W~ t !•W~ t8!& dt852Q, ~21!

where we have set

^W~ t !•W~ t8!&52Qd~ t2t8!. ~22!

We may assume thatQ is independent of time because a
intrinsic chaotic motion of particles is the source of the ra
domness ofW. Since the temperature is given by Eq.~14!
we find that the temperature increases linearly. For sm

Dt; 1
60 , T increases only slightly as a function of timet. In

this case the effect of the numerical error on the tempera
is considered to be small. The increase in the temperatu
also due to domain growth by which the surface energy
released. Most of the potential energy is released in the
tial stage of the phase separation and therefore the increa
the temperature is not effective in later stages of the ph
separation. For the intermediate values ofDt the temperature
becomes affected seriously by the numerical error as t
proceeds. Notice that such an effect always occurs even
smaller value ofDt as time proceeds.

Now let us consider the case of a simulation under c
stant temperature. This case is equivalent to introducing
effective friction term. The frictional coefficient is commo
to all particles. This violates the local momentum conser
tion. Therefore, if the effect of the numerical error cannot
neglected, the macroscopic equation is not like the Nav
Stokes equation but like the Langevin equation in the light
the standard statistical mechanics. Let us assume tha
equation for the macroscopic motion contains a friction te
2geffv, which is not like that of the Navier-Stokes equatio
but of the Langevin equation. Herev means the velocity of
the macroscopic motion. The friction term2geffv is related
to the random forceW(t) by the usual fluctuation-dissipatio
theorem

geff5
Q

^v2&
. ~23!

The characteristic velocityu[R/t should obey a dimen-
sional equation

u

t
'2geffu1

s

rR2 , ~24!

where the second term on the right-hand side is the driv
force by the surface tension. This is transformed into

R21'S r

s D 1/3~ t221gefft
21!1/3. ~25!

Then the effective growth exponentaeff is given as

ar
e
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1156 55H. FURUKAWA
aeff[
d lnR

d lnt
'

~ 2
31 1

3gefft !

~11gefft !
. ~26!

Sincegeff is larger for largerDt, aeff crosses over from 2/3 to
1/3 ast and/orDt becomes larger. In Fig. 8 length scal
obtained by the molecular dynamics are shown as funct
of time for some values of 1/Dt. The temperature is
kBT50.22 and the number of particles is 2562. The simula-
tion is done up to time 20360. In Fig. 9 we show the cor
responding growth exponents determined by the le
squares method at temperaturekBT50.22 for several values
of 1/Dt. Each rectangle with a black square represents a
of three exponents forM521,0,1. The curve on the figur
indicates Eq.~26!. Here we have assumed thatgeff;ZDt,
whereZ is a constant. Further we neglected thet dependence
in Eq. ~26! and we have settgeff;ZtDt;5Dt. In the last
equality of this equation we have replacedZt simply by 5
because we are interested in theDt dependence ofaeff . At
this moment we cannot analytically determine the dep
dence of thegeff on Dt. The prediction~26! is qualitatively

satisfied. It can be also found thatDt5 1
60 , which is used in

Sec. III, is not small enough to obtain the suitable grow
exponent 2/3.

V. NUMERICAL ANALYSIS OF INTEGRATION
OF PHENOMENOLOGICAL EQUATIONS

Here we present results given by the numerical integra
of phenomenological kinetic equations. Phenomenolog
kinetic equations of fluid mixture have been developed
many authors~see, for instance,@28#!. Let nA(r ) andnB(r )
be particle densities ofA and B species andv(r ) be the
velocity field. Then we introduce another set of variables

c[nA2nB , ~27!

n[nA1nB . ~28!

We assume that the free energy is given by

FIG. 8. Temporal evolution of the length scale by molecu
dynamics for various discrete timesDt at temperaturekBT50.22.
Numbers in the figure indicate sets of system size and the valu
inverse discrete time 1/Dt. Heret0560 andR05R at t5t0.
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F5E S r

2
v21

1

2
x21~n2n0!

21
g

2
u¹c~r !u21

a8

2
c2

1
b8

4
c4Ddr . ~29!

Here r is the mass density of the fluid and is given
r5nm, wherem is the mass of a molecule. Coefficien
a8, b8, andm are set2a85b85m51 and we also assum
x21@1 as an incompressible condition. Settinga8521, the
free energy takes minima atc561. In this case the two-
phase state is stable. The quantitiesc andn must satisfy the
continuity equations and therefore we assume

dn

dt
52¹• jn , ~30!

dc

dt
52¹• jc , ~31!

where thej ’s are currents

jn5nv2Ln¹mn* , mn*[
dF

dn
, ~32!

jc5cv2Lc¹mc, mc[
dF

dc
, ~33!

and the second term in each current represents the diffus
mn* is the chemical potential in a dynamical sense and c
tains the velocity fieldv. Usually in many phenomenologica
theories the second term ofjn is neglected. But this does no
mean that the role ofmn* can be neglected. We assume th
the velocity fieldv obeys the Navier-Stokes equation

r
dv

dt
52r~v•¹!v1h¹2v2¹P, ~34!

whereh is the shear viscosity and is related to the kine
viscosityn by the relation

h5rn. ~35!

r

of

FIG. 9. Growth exponenta as a function of 1/Dt by molecular
dynamics at temperaturekBT50.22. One rectangle with black
square indicates a set of three exponents forM521,0,1. The curve
indicates Eq.~26!, where we have setgefft;ZtDt;5Dt.
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P is the static pressure. We consider the case of cons
temperature. Then we can show that the Navier-Stokes e
tion ~34! can be transformed into~see Appendix B!

r
dv

dt
52r~v•¹!v1h¹2v2n¹mn2c¹mc , ~36!

where

mn[
dF ~0!

dn
5x21~n2n0!, ~37!

mc[
dF

dc
52g¹2c2c1c3. ~38!

HereF (0) is the free energy forv50. In solidsv50 due to
the infinite friction. This corresponds to lettingn→`. As a
result, the equation of motion forc is of a closed form and
reduces to the Cahn-Hilliard equation@29#. In fluids, under
the conditionx21@1, Eq. ~36! can be solved to give the
well-known kinetic equation ofc using the Oseen tenso
@30# ~see Appendix C!.

The numerical analysis of the incompressible fluid can
done by solving Eqs.~30!–~33! and ~36!–~38!. Notice that
Eq. ~30! is a subsidiary equation for the incompressibility
fluid. This equation may be replaced by simpler one. W
neglected the diffusion term in Eq.~30!:

dn

dt
52¹•nv. ~39!

Furthermore, for the sake of computational efficiency,
used another form of the chemical potential functional

mc52K¹2c2
tanhc

tanh1
1c, ~40!

which is shallower than the original one~38!. HereK is a
constant. Equation~40! is based on the algorithm introduce
by Oono and Puri@27#. We have neglected any rando
forces. The thermal fluctuation is included only in the init
condition.

The numerical method is a simple Euler method. The s
tem is divided into 2563256 cells. The discrete time is cho
sen to be 0.1. Shorter ones are also tried, but the results
not changed. The spatial derivative is replaced by differen
such asA(x11,y)2A(x,y) or @A(x11,y)2A(x21,y)#/2.
Then we chose parameters asLc5Ln51/4, x21510, and
K51/8. Choosing such ax, we find thatn51 within a width
of the order61024.

In Fig. 10 we show temporal evolutions of phas
separating patterns by the above phenomenological equa
The time interval between successive patterns in each
quence is 64. The system size is 642. The viscosity is
n50.01. Initially c is randomly distributed betwee
20.25<c<0.25 and the velocity field is set to zero, i.e
v50. The difference between the two sequences I and I
that the initial value ofc in one of the cells is shifted by th
amount 0.1. The two sequences exhibit some differen
from each other, but these differences are small compare
the differences in the case of molecular dynamics in Sec.
nt
a-

e

e

e

l

s-

are
es

-
on.
e-

is

es
to
.

Furthermore, the shift in the initial condition in th
molecular-dynamical case is quite small compared to
present one. Therefore, we find that the two numerical me
ods, the molecular dynamics and the integration of the p
nomenological equation, are quite different in tractability.

Now we present numerical results of the temporal evo
tion of the length scale in a larger system. Initially the v
locity field v is set to zero and the order parameter is ra
domly distributed between20.75<c<0.75. The numerical
integration is done up to time 203128. In each time interva
128, we obtain numerical data. Figure 11 shows length sc
as functions of time for a small value of the kinetic viscos
n50.01. The straight lines are determined by the lea
squares method~18!. Data are averaged over ten differe
runs. The Reynolds number evaluated in this case is m
than 1000. The growth exponenta is obtained for various
values ofM , which are shown in the figure.

In Sec. II we have shown that there are two simi
growth exponents 2/3 and 3/5 associated with the inertia
Appendix A we discuss fluctuations and energy dissipati
in the process of the phase separation and we discuss
two growth laws in detail. We find that the coarsening pr
cess associated with the exponent 3/5 must accompany
ter reseparations. In our numerical simulations, howev
cluster surfaces ramify, but clusters do not reseparate. In
der for clusters to separate again, the energy must be
centrated in a narrow space. But such a concentration oc
with very small probability. We consider therefore, that t
observed growth exponents indicate not 3/5 but 2/3.

VI. SUMMARY

The purpose of this paper was to examine the phase s
ration of a low-viscosity fluid mixture. We studied a two
dimensional fluid mixture both by the molecular dynami
with a simplified interparticle potential and by the numeric
integration of the phenomenological equation. All studies
done for critical composition. We found that both types
simulations give the growth exponentR}t2/3. Several phe-
nomenological models have exhibited the same expon
a52/3 @9–11,17–20#. We have shown that numerical erro
in molecular dynamics seriously affect the phase-separa
process. The growth exponenta decreases from 2/3 to 1/3 a
numerical errors become larger. The source of such a re

FIG. 10. Temporal evolutions of phase-separating patterns
the phenomenological equation. The kinetic viscosityn50.01. The
system is divided into 64364 cells. Two sequences I and II sta
with different initial conditions, namely, that the order parameter
one of the cells for sequence I is different by the amou
Dc50.1 from that of sequence II.
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1158 55H. FURUKAWA
tion of the growth exponent is numerical errors arising fro
the chaotic property of the many-particle system. A previo
molecular dynamics analysis gave a smaller growth expon
a<0.5 @15#. In that molecular dynamics study a steep
Lennard-Jones-type interparticle potential was used. Gen
ally the numerical error is larger for such a steeper potent
Therefore, it is worth examining the effect of the numeric
error for such a steep potential. We also emphasize that
system size is responsible for obtaining a suitable grow
exponent. In our simulation we observed a plateau ofa as a
function of temperature~see Fig. 5!. This means that our
system size is large enough.

We have used the simplest way of setting a constant te
perature~17!, which violates the local momentum conserva
tion law. There may be a better way of setting a consta
temperature. But remember that our primary purpose of
present paper was to examine the growth exponenta by the
molecular dynamics. This purpose has been achieved.

In this paper we predicted another set of growth exp
nentsa53/5 and 6/(d14), where the inertia and the energ
dissipation are simultaneously associated with the dom

FIG. 11. Temporal evolution of length scales by the pheno
enological equation, which are determined by the least-squa
method. The parameterM and growth exponenta are shown on the
left- and on the right-hand sides, respectively.t05128, R05R at
t5t0, and b is a suitably determined value by the least-squar
method. The vertical axis does not represent a correct zero poi
s
nt
r
r-
l.
l
he
h

-
-
t
e

-

in

growth. It is not obvious if such growth laws are really o
served.

APPENDIX A: ENERGY DISSIPATION AND GROWTH
LAWS ASSOCIATED WITH INERTIA

We examine here the energy dissipation in a fluid mixtu
in detail and then give a detailed discussion for the grow
exponents 2/3 and 3/5 associated with inertia, based on
hydrodynamic equation. The energy dissipation sometime
responsible for the growth exponent in solid systems@31#.
For simplicity we write the equation for the velocity fieldv
in the form

r
dvk
dt

1hk2vk5Fk , ~A1!

wherek is the wave number,h5nr is the shear viscosity
and F is the force term. Equation~A1! is based on the
Navier-Stokes equation. A general consideration of the eq
tion of motion for the velocity fieldv is given in Appendix
B. Equation~A1! is simplified as

hk2vk5Fk for nk2t ~5nk2v/ v̇ !.1, ~A2!

r
dvk
dt

5Fk for nk2t,1. ~A3!

From this the energy dissipation is separated into two pa

ėD[ (
nk2t.1

hk2uvku2

5 (
nk2t.1

1

hk2
uFku2;uF0u2h21~kl

d222kc
d22!, ~A4!

ė I[ (
nk2t,1

hk2uvku2; (
nk2t,1

hr22k2t2uF0u2,

~A5!

where we have setFk5F0. Herekc is the critical wave num-
ber determined by

nkc
2t51. ~A6!

kl is the upper limit of the integration and it is due to th
freezing of the short wavelength due to the coarsening.
kl.kc , ė I;uF0u2hr22t2kc

d12;uF0u2h21kc
d22 and the total

energy dissipation is given by

ė5 ėD1 ė I;uF0u2h21kl
d22 for kl.kc ~A7!

and

ė5 ė I;uF0u2hr22t2kl
d12;uF0u2h21kl

d12/kc
4 for kl,kc .

~A8!

The upper limit of the integrationkl is determined as fol-
lows. Let the average length scale beR. Then the total en-
ergy density is given bye;s/R, wheres is the surface

-
es

s
t.
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55 1159DYNAMICS OF PHASE SEPARATION OF A SIMPLE . . .
tension. The energy dissipation is also given bye/t;s/Rt
and therefore we find forkl.kc thatuF0u2h21kl

d22;s/Rt or
kl
d22;hs/uF0u2Rt. When the surface tension is effectiv
the forceF in the real space is of the ordere/R;sR22.
Therefore, in the Fourier space we haveuF0u2;s2Rd24.
Therefore, forkl.kc we have

~klR!d22;
hR

st
. ~A9!

In the same way, forkl,kc we have

~klR!d12;
h

st
~Rkc!

4R. ~A10!

Let us consider the case where the inertia effects the
main growth. Then we examine the effect of the energy d
sipation on the phase separation. First we consider the
where the domain growth is done independently of the
ergy dissipation. In this case the length scaleR varies as
discussed in Sec. II,

R;S s

r D 1/3t2/3. ~A11!

Now we consider the behavior ofkl . First let us consider the
case of two dimensions. In the casekl.kc , using
(klR)

d22;hR/st, we obtainklR;exphR/st→1 (R/t→0).
Thuskl;1/R}t22/3. Sincekc}t

21/2, the conditionkl.kc is
violated in the long-time limit. On the other hand, fo
kl,kc we havekl}t

27/12't25.8. Then the condition

1/R,kl,kc ~A12!

is always fulfilled. The same also holds for three dimensio
For kl.kc we havekl}1/t and the conditionkl.kc is not
satisfied in the long-time limit. On the other hand, f
kl,kc we havekl}t

23/55t20.6 and the above condition i
fulfilled.

Next we consider the case where the energy dissipa
interferes with the domain growth. The wave numberkc is
not observable. However,kl is the cutoff of the velocity
field, is observable, and gives another length scale. Tha
the released surface energy at the scaleR is dissipated at a
smaller scale 1/kl : The kinetic energy remains in the flui
for this period. Due to such a remaining kinetic energy, it
possible that clusters may separate into pieces again. If
a reseparation occurs, then the limit of the wave numbekl
should be the characteristic length scaleR. Then we observe
thatR;1/kl ande;skl , and by settingklR51 in relation
~A10! for kl,kc , we obtain

R;S sn

r D 1/5t3/5, ~A13!

which is given in Sec. II.
Generally, by settingR}ta, the Reynolds numbernR2/t

increases ifa.1/2. The inertial term becomes effective fo
Reynolds number larger than 1. Three growth lawsR
}t,t2/3, andt3/5 give the same value of the length scale
o-
-
se
-

s.

n

is,

ch

Rc5
rn2

s
~A14!

for Re51 ~the crossover point!.

APPENDIX B: PHENOMENOLOGICAL DESCRIPTION
OF FLUID MIXTURE

We derive here a suitable equation of motion for veloc
field from the original Navier-Stokes equation~34!. Since
nA5(n1c)/2 andnB5(n2c)/2, we find that

mn~r ![
dF ~0!

dn

5E FdnA~r 8!

dn~r !

dF ~0!

dnA~r 8!
1

dnB~r 8!

dn~r !

dF ~0!

dnB~r 8!Gdr 8
5

mA~r !1mB~r !

2
~B1!

and

mc~r ![
dF ~0!

dc

5E FdnA~r 8!

dc~r !

dF ~0!

dnA~r 8!
2

dnB~r 8!

dc~r !

dF ~0!

dnB~r 8!Gdr 8
5

mA~r !2mB~r !

2
, ~B2!

where F (0) is the static part of the free energy
F (0)5F(v50), andmA[dF (0)/dnA andmB[dF (0)/dnB are
the static chemical potentials of speciesA and B, respec-
tively. Then using Gibbs-Duhm relationsdT2dP
1S i5A,Bnidm i50, where s[S/V is the entropy density,
and also using the relation nAdmA1nBdmB
5ndmn1cdmc , we havesdT2dP1ndmn1cdmc50 or
s¹T2¹P1n¹mn1c¹mc50. Under the constant tempera
ture the first term vanishes. Then using this we rewriteP in
Eq. ~34! to obtain

r
dv

dt
52r~v•¹!v1h¹2v2n¹mn2c¹mc , ~B3!

where

mn[
dF ~0!

dn
5x21~n2n0!,

mc[
dF ~0!

dc
5

dF

dc
52g¹2c2c1c3. ~B4!

We must show that the free energy~29! does not increase
This is a necessary condition for phenomenological eq
tions. Let us consider the time derivative of the free ener

dF

dt
5E S v̇dF

dv
1ṅ

dF

dn
1ċ

dF

dc Ddr
5E F v̇•mv1ṅSmv2

2
1mnD1ċmcGdr , ~B5!

where
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1160 55H. FURUKAWA
mv[
dF

dv
5rv. ~B6!

By substituting equations forc, n, and v, i.e., Eqs.~30!–
~33! and ~B3!, into Eq. ~B5! we have

dF

dt
5E H v•S 2r¹

v2

2
1h¹2v2n¹mn2c¹mcD

1Smv22 1mnD @2¹•~nv!1Ln¹
2mn* #

1mc@2¹•cv1Lc¹2mc#J dr , ~B7!

where in the first term we usedv•@(rv•¹)v#5(rv•¹)v2/2.
By rearranging terms with the aid of the partial integrati
we have

dF

dt
5E S 2rv•¹

v2

2
2
v2

2
¹•rvDdr

2E ~2hv•¹2v1Lcu¹mcu21Lnu¹mn8u
2!dr .

~B8!

The first term is reduced to the surface integrat
2*¹rv(v2/2)dr and vanishes. Finally, we find that the fre
energy does not increase:

dF

dt
52E F2hv•¹2v1Lcu¹mcu21LnU¹Smv2

2
1mnD U2Gdr

<0. ~B9!

We comment here on Eq.~B3!. By rewriting Eq. ~B9!
with the use of kinetic equations~30!–~33! and~B3! we have

dF

dt
52h21E S r

dv

dt
1n¹mn1c¹mcD¹22S r

dv

dt
1n¹mn

1c¹mcDdr2Ln
21E S dndt 1¹•nvD

3¹22S dndt 1¹•nvDdr2Lc
21E S dc

dt
1¹•cvD

3¹22S dc

dt
1¹•cvDdr . ~B10!

Here we have neglected the temperature term and nonli
term of velocity field. In Eq.~B10! the second and the thir
term are the product of quantities that satisfy the conse
tion law. By this reason the long-range integration of the
terms gives a finite contribution. But the first term is not
such a form. The first term on the right-hand side is writt
using the Fourier coefficient, as
ar

a-
e
f
,

E h21k22US r
dvk
dt

1n¹mn1c¹mcD
k
U2kd21dk

5E huvku2kd11dk. ~B11!

Here v and each term in the large parentheses on the
hand side are nonconserved quantities. Namely,m is a non-
linear function of a conserved quantity and is a nonconser
quantity. The product of the conserved quantity is genera
nonconserved. Then the time derivative ofv, which contains
c¹mc , is nonconserved. We may assume that the spa
correlation between two nonconserved quantity vanishe
two points are separated by a sufficiently long distance. T
from the central limit theorem, mean squares of these qu
tities take constant values at small wave numbers. For
stance, limk→0^uvku2&5const,`. Therefore contributions
from small values ofk are*kd23dk on the left-hand side of
Eq. ~B11! and*kd11dk on the right-hand side. Therefore, i
the limit k→0, we demand that

r
dv

dt
1n¹mn1c¹mc→0 for d<2 ~B12!

and

Ur dvdt 1n¹mn1c¹mcU,` for d.2. ~B13!

Therefore, in two dimensions the inertial termrdv/dt cannot
be neglected if the force termn¹mn1c¹mc does not vanish
at small wave numbers.

APPENDIX C: INCOMPRESSIBLE FLUID „LINEAR CASE …

In fluid the assumption of incompressibility is often use
This assumption can be used to eliminate the velocity fi
v and to make a closed equation forc. In order to make the
fluid incompressible we assume that the change in the d
sity due to the diffusion is very small:Ln→0. Sincen is
constant, 05ṅ52n¹•v1Ln¹

2mn from Eqs.~30! and~32!.
In the limit Ln→0, we have¹•v50. But we cannot simply
set¹•v50. This is because we must treat the transmiss
of the force in fluid. Thus we assume that¹•v is very small
compared to¹2mn . Inserting¹ into the linearized equation
~36!, we have

r
d

dt
¹•v5h¹2¹•v2n¹2mn2¹•~c¹mc!. ~C1!

Here the second term on the right-hand side is equivalen
Ln

21n2¹•v and is much larger than the left-hand side and
first term on the right-hand side. The left-hand side and
first term on the right-hand side are smaller than any ot
terms. Therefore,2n¹2mn2¹•(c¹mc)50. To solve this
equation for¹mn we multiply the equation by¹¹22, i.e.,
2n¹mn5¹¹22¹•(c¹mc). By substituting this into the lin-
earized equation~36! we obtain
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r
dv

dt
5h¹2v2~ I2¹22¹:¹!c¹mc

5h¹2v2hE ¹2T~r2r 8!c~r 8!¹8mc~r 8!dr 8.

~C2!

HereT is the Oseen tensor

T~r2r 8![h21¹22~ I2¹22¹:¹!d~r2r 8!

5~8p3h!21E k22~ I2 k̂: k̂!eik•r2r8dk. ~C3!

wherek andk̂[k/k are the wave-number vector and the u
wave-number vector, respectively. For viscous fluid this
.

ev

A

y

et
t
s

solved to give a well-known kinetic equation forc @30#. The
inertial term can be neglected when the viscosity is large.
setting the left-hand side of Eq.~C2! equal to zero we have
v5*T(r2r 8)c(r 8)¹8mc(r 8)dr 8. By substituting this into
Eq. ~31!, we have

dc

dt
5Lc¹2mc1¹cE :T~r2r 8!:c~r 8!¹8mc~r 8! dr 8

5Lc¹2mc2¹cE :T~r2r 8!:@¹8c~r 8!#mc~r 8! dr 8.

~C4!

Here we have usedc¹m5¹(mc)2(¹c)m and T¹50 to
transform the first equality into the last one.
d

n
a
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